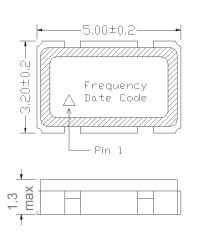
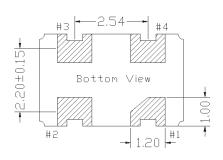
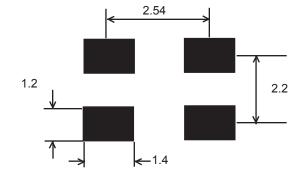
FTX3 Series High Reliability 5.0x3.2 mm Ceramic CMOS/TTL Clock Oscillator


Product Features


- · Made in the USA
- 0.5MHz to 200 MHz Frequency Range
- 1.8V /2.5V /3.3V/5.0V logic levels
- · Hermetically sealed ceramic packages
- · Wide operating temperature range
- Military screening tests avaliable
- High shock resistance(meet 3000G shock)
- Pb-free and RoHS/Green compliant


Applications

- High schock and vibration environments
- Military applications
- Extended temperature applications
- Down-hole drilling Equipments
- Instrumentation and Microprocessor

Outline Drawing & Pad Layout

Dimensions in mm

PIN CONNECTIONS

- 1. Not connected (N) or Enable/Disable (E)
- 2. Ground
- 3. Output
- 4. V_{DD}

HOW TO ORDER

 $F = 20 \text{ ppm over } -20^{\circ}\text{C to } +70 {^{\circ}\text{C}}$ $G = 50 \text{ ppm over } -20^{\circ}\text{C to } +70 {^{\circ}\text{C}}$

FTX3 Series High Reliability 5.0x3.2 mm Ceramic CMOS/TTL Clock Oscillator

Electrical Performance

Frequency Range : 0.5MHz to 200 MHz

Frequency Stability

All Causes (Maximum) : ± 25.0 ppm, ± 30.0 ppm, ± 50.0 ppm, ± 100.0 ppm (plus other options).

Aging (Maximum per year at $+25.0 \,^{\circ}\text{C}$) : $\pm 5.0 \,^{\circ}\text{ppm}$.

Temperature Range

Operating : -20 to + 70 °C (-40 to + 85 °C plus other options).

Storage : - 55 to + 125 °C.

Supply Voltage (± 10.0 %) : +5.0 V. | +3.3 V. | +2.8 V. | +2.5 V. | +1.8 V.

Supply Current (Maximum)

1.000 000 to 9.999 999 MHz 20.0 mA. 15.0 mA. 10.0 mA. 10.0 mA. 8.0 mA. 10.000 000 to 34.999 999 MHz 30.0 mA. 20.0 mA. 15.0 mA. 15.0 mA. 10.0 mA. 35.000 000 to 49.999 999 MHz 40.0 mA. 30.0 mA. 25.0 mA. 20.0 mA. 15.0 mA. 50.000 000 to 200.000 000 MHz 50.0 mA. 35.0 mA. 30.0 mA. 25.0 mA. 40.0 mA.

Output Characteristics

Waveform : Squarewave.
Output : HCMOS / TTL.
Load (Maximum) : 15 pF / 5 TTL gates.

Mark Space Ratio (at 50 % V_{CC}) : 40 / 60 % (45 / 55 % option).

Rise / Fall Times (Maximum)

Start up Time (Maximum) : 10.0 ms.

Logic Levels

High (Minimum) : 90 % V_{CC}. Low (Maximum) : 10 % V_{CC}.

Pin 1 (Tri-State) (option)

High (see below) or Open : Enable.
Low (see below) : Disable.

70 %. 70 %. 70 %. High V_{CC} value (Minimum) 2.0. 70 %. 0.8. Low V_{CC} value (Maximum) 20 %. 20 %. 20 %. 20 %. 50.0 μΑ. Disable Current (Maximum) 10.0 μΑ. 10.0 μΑ. 10.0 μΑ. 3.0 μΑ.

Enable Delay Time (Maximum) : 10.0 ms. Disable Delay Time (Maximum) : 100.0 ns.

Package Style : 5.00 x 3.20 x 1.30 mm.

Environmental Specifications		
Test	Test Method	Test Condition
Electrical Characteristics	Internal Specification	Per Specification
Frequency vs. Temperature	Internal Specification	Per Specification
Mechanical Shock	MIL-STD-202, Method 213, C	100 g's
Vibration	MIL-STD-202, Method 201-204	10 g's from 10-2000 Hz
Thermal Cycle	MIL-STD-883, Method 1010, B	-55 Deg. C to +125 Deg. C, 15 minute Dwell, 10 cycles
Aging	Internal Specification	168 Hours at 105 Degrees C
Gross Leak	MIL-STD-202, Method 112	30 Second Immersion
Fine Leak	MIL-STD-202, Method 112	Must meet 1x10 ⁻⁸
Solderability	MIL-STD-883, Method 2003	8 Hour Steam Age – Must Exhibit 95% coverage
Resistance to Solvents	MIL-STD-883, Method 2015	Three 1 minute soaks
Terminal Pull	MIL-STD-883, Method 2004, A	2 Pounds
Lead Bend	MIL-STD-883, Method 2004, B1	1 Bending Cycle
Physical Dimensions	MIL-STD-883, Method 2016	Per Specification
Internal Visual	Internal Specification	Per Internal Specification